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Shock and Detonation Physics

Infl uence of Elastic 
Shear Stiff ness on 
Richtmyer-Meshkov 
Instability
JeeYeon N. Plohr (T-1) and 
Bradley J. Plohr (T-13)

In 1953, R. D. Richtmyer wrote a 
Los Alamos Scientifi c Laboratory 
report, published as Ref. [1], about 
what happens when a shock wave 

strikes an interface between two fl uids head 
on. By analogy with the classical Rayleigh-
Taylor instability [2, 3] of an interface 
subjected to constant acceleration, he 
expected that the impulsive acceleration of 
the shock wave would cause deviations of 
the interface from perfect fl atness to grow 
in time. Th e combined mathematical and 
computational analysis in Ref. [1] confi rmed 
this expectation. Th is fl uid instability was 
seen experimentally by E. Meshkov [4] 
and is now called the Richtmyer-Meshkov 
instability.

What happens if the two materials are 
solids rather than fl uids? One diff erence 
between a solid and a fl uid is elastic shear 
stiff ness, which should resist the growth 
of perturbations. Th is tendency is seen 
in the infl uence of elastic shear stiff ness 
on the Rayleigh-Taylor instability in the 
small-amplitude regime [5]: the growth 
rate of perturbations is reduced, and short 
wavelength perturbations are stabilized 
altogether. We have investigated the elastic 
Richtmyer-Meshkov instability in the small 
amplitude regime. Our fi nding is that shear 
stiff ness, however small, causes perturbations 
of any wavelength to remain small: 
Richtmyer-Meshkov fl ow for elastic solids is 
stable.

Richtmyer-Meshkov fl ow is described by the 
Euler equations, a set of partial diff erential 
equations (PDEs), involving several fl ow 
variables (mass density, particle velocity 
components, and specifi c energy), that 
embodies conservation of mass, momentum, 

and energy. To determine whether a 
particular fl ow (the “background fl ow”) is 
unstable, one rewrites the Euler equations 
in terms of the deviations of the fl ow 
variables from their background values (the 
“perturbation”). So long as the perturbation 
remains small, the rewritten equations are 
close to the “linearized equations” that 
neglect terms of quadratic and higher order 
in the perturbation. Th e linearized equations 
are then studied to see whether an initially 
small, but nonzero, perturbation grows in 
time.

For classical instability problems, such as 
the Rayleigh-Taylor problem, the linearized 
equations are amenable to exact mathematical 
analysis, primarily because the coeffi  cients 
appearing in the linearized equations are 
independent of space and time. For the 
Richtmyer-Meshkov problem, however, this 
is not true; analysis reduces the problem to a 
PDE for one space and one time dimension, 
but this PDE has no (known) analytical 
solutions. Richtmyer’s essential innovation 
was to use an early digital computer to 
simulate the reduced PDE. He found that 
Richtmyer-Meshkov fl ow for fl uids is 
unstable, with the perturbation amplitude 
growing roughly linearly with time.

Our work on elastic solids [6, 7] 
follows Richtmyer’s approach and later 
refi nements [8] but is more complicated 
because representation of solid deformation 
requires a nine-component tensor, whereas 
a single scalar, the volume, suffi  ces for 
a fl uid. A nonstandard formulation of 
elasticity [9, 10] casts the governing 
equations as a system of conservation laws. 
Equations of state for the solids are needed 
to complete the governing equations; the 
ones we developed are thermodynamically 
consistent and allow for arbitrarily large 
volumetric deformation combined with a 
small shear deformation. Th e background 
fl ow is constructed by solving the one-
dimensional problem of shock transmission/
refl ection at a material interface, and the 
initial values for the perturbation are 
constructed by solving a two-dimensional 
version of this problem when the angle of 
incidence is small. Th e conservation laws 
are linearized around the background 
fl ow, as are the jump conditions, which are 
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implied by the conservation laws, for the 
discontinuous waves (the longitudinal and 
shear shock waves and the material interface). 
For each sinusoidal mode, we obtain linear 
conservation laws, with source terms and 
spatially varying coeffi  cients, in one space 
and one time dimension. Th e initial-value 
problem is solved numerically using a fi nite 
diff erence method supplemented by a front 
tracking scheme.

Th e plot of amplitude vs time from our 
simulations  is shown in Fig. 1. Our 
simulations support the following conclusions 
concerning the growth rate and amplitude 
of perturbations of a frictionless material 
interface between elastic solids when it is 
struck normally by a shock wave:
• Even a small shear modulus changes 

the late-time asymptotic behavior of the 
growth rate. Rather than approaching 
a constant so that the amplitude grows 
linearly, it oscillates in such a way that the 
amplitude remains bounded. In particular, 
the linear theory remains valid at late time.

• Th e amplitude oscillates around an 
asymptotic value with a frequency that 
grows with the shear moduli (see Fig. 2) 
and is independent of the strength of the 
incident shock wave.

• If the shock strength is increased, the 
amplitude oscillates about a smaller 
asymptotic value and the oscillations 
increase in variation.

• Varying the bulk modulus has little eff ect 
on the behavior of the material interface.

We explain the striking diff erence between 
fl uid and elastic solid behavior in Richtmyer-
Meshkov fl ow in the following way. Th e role 
of the shock wave in Richtmyer-Meshkov 
is to deposit vorticity on the perturbed 
interface. Th is sheet of vorticity is subject to 
Kelvin-Helmholtz instability. In (inviscid, 
incompressible) fl uid dynamics, the vorticity 
remains on the interface, so that Kelvin-
Helmholtz instability leads to growth of 
perturbations. In contrast, for elastic solids, 
the vorticity propagates at the shear wave 
speeds and thus escapes the interface, so that 
perturbations of the interface do not grow.
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Figure 2—
Period of oscillations 
vs 1/ κ  for various 
values of the interpola-
tion parameter κ, which 
determines the shear 
moduli κ GTa and κGAl of 
the model solids.

Figure 1—
Amplitude vs time for 
tantalum/aluminum 
and various Mach 
numbers of the incident 
shock wave.




